Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Medical Journal ; (24): 3668-3674, 2013.
Article in English | WPRIM | ID: wpr-236192

ABSTRACT

<p><b>BACKGROUND</b>Patients with single station mediastinal lymph node (N2) non-small cell lung cancer (NSCLC) have a better prognosis than those with multilevel N2. The molecular factors which are involved in disease progression remain largely unknown. The purpose of this study was to investigate gene expression differences between single station and multilevel N2 NSCLC and to identify the crucial molecular factors which are associated with progress and prognosis of stage N2 NSCLC.</p><p><b>METHODS</b>Gene expression analysis was performed using Agilent 4×44K Whole Human Genome Oligo Microarray on 10 freshfrozen lymph node tissue samples from single station N2 and paired multilevel N2 NSCLC patients. Real-time reverse transcription (RT)-PCR was used to validate the differential expression of 14 genes selected by cDNA microarray of which four were confirmed. Immunohistochemical staining for these validated genes was performed on formalin-fixed, paraffinembedded tissue samples from 130 cases of stage N2 NSCLC arranged in a high-density tissue microarray.</p><p><b>RESULTS</b>We identified a 14 gene expression signature by comparative analysis of gene expression. Expression of these genes strongly differed between single station and multilevel N2 NSCLC. Four genes (ADAM28, MUC4, CLDN1, and IGF2) correlated with the results of microarray and real-time RT-PCR analysis for the gene-expression data in samples from 56 NSCLC patients. Immunohistochemical staining for these genes in samples from 130 cases of stage N2 NSCLC demonstrated the expression of IGF2 and CLDN1 was negatively correlated with overall survival of stage N2 NSCLC.</p><p><b>CONCLUSIONS</b>Our results suggest that the expression of CLDN1 and IGF2 indicate a poor prognosis in stage N2 NSCLC. Further, CLDN1 and IGF2 may provide potential targeting opportunities in future therapies.</p>


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Non-Small-Cell Lung , Metabolism , Mortality , Pathology , Claudin-1 , Genetics , Immunohistochemistry , Insulin-Like Growth Factor II , Genetics , Lung Neoplasms , Metabolism , Mortality , Pathology , Neoplasm Staging , Prognosis
2.
Chinese Medical Journal ; (24): 2883-2889, 2011.
Article in English | WPRIM | ID: wpr-292784

ABSTRACT

<p><b>BACKGROUND</b>Recombinant human endostatin (rh-endostatin, Endostar) has been proved to be an inhibitor of angiogenesis. Docetaxel has been also considered as a common chemotherapeutic agent with inhibition of angiogenesis of malignancies. However, their function has been seldom compared and a best synergism protocol is not determined. This study aimed to compare the effects of two drugs, investigate their combined impact on human umbilical vein endothelial cells (HUVECs), a molecular basis and find ideal protocols to inhibit endothelial cell proliferation.</p><p><b>METHODS</b>HUVECs on confluent growth or activated by vascular endothelial growth factor (VEGF) were treated by rh-endostatin or/and docetaxel at respective gradient concentration in following operations as cell proliferation determined by MTT assay, cell cycle distribution, apoptosis and markers of CD146, CD62E and CD105 detected by flow cytometery, the structure of the channel formed by HUVECs measured by tube formation count.</p><p><b>RESULTS</b>Rh-endostatin exhibited time dependent inhibition of proliferation while docetaxel showed both time and dose dependent inhibition. HUVECs accumulated in G(0)-G(1) with decreased numbers of cells in G(2) after a single treatment of rh-endostatin or that followed by docetaxel treatment. Cells accumulated in G(2) after both a single docetaxel and simultaneous administration. Both the number of cells in G(0)-G(1) and apoptotic cells were increased by docetaxel followed by rh-endostatin treatment. The number of non-apoptotic cells at G(0)-G(1) was increased by first administering rh-endostatin then docetaxel. Sequential treatment of docetaxel followed by rh-endostatin resulted in the greatest increase in apoptosis (34.7%) and the second highest apoptosis was seen with simultaneous administration (18.2%). Expression of CD146 and CD105 on confluent HUVECs was reduced at certain doses of rh-endostatin and/or docetaxel. However, rh-endostatin reduced CD105 without any apparent impact on either CD146 or CD62E expression, whereas these markers were down-regulated by docetaxel after pre-activation by VEGF. Rh-endostatin treatment maintained tube-like structures for a limited time. In contrast, docetaxel swiftly reduced tube formation. Simultaneous treatment, or docetaxel followed by rh-endostatin, exhibited a stronger inhibition on tube formation than either agent alone.</p><p><b>CONCLUSIONS</b>Both rh-endostatin and docetaxel can inhibit HUVEC proliferation while the high apoptotic rate after combined administration was probably owing to different sequent administration by docetaxel followed by rh-endostatin or simultaneous treatment. Both proliferation and adhesion molecules on HUVECs of confluent growth are down-regulated by the two drugs. The rh-endostatin decreased proliferation markers, but only slightly modified adhesion molecules, while both markers were down-regulated by docetaxel on HUVECs activated by VEGF. Rh-endostatin could maintain adhesion of HUVECs at first then induce cells apoptosis to damage tube formation. We hypothesize that it could lead to vascular normalization in short time. In contrast, docetaxel can suppress HUVEC proliferation, adhesion, and reduced tube formation swiftly due to its cytotoxicity. Combined treatments can induce a synergistic inhibition of tube formation.</p>


Subject(s)
Humans , Antigens, CD , Metabolism , Apoptosis , CD146 Antigen , Metabolism , Cell Proliferation , E-Selectin , Metabolism , Endoglin , Endostatins , Pharmacology , Flow Cytometry , Human Umbilical Vein Endothelial Cells , Cell Biology , Receptors, Cell Surface , Metabolism , Recombinant Proteins , Pharmacology , Taxoids , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL